Proiect - Coroziunea Si Protectia Metalelor Si Aliajelor Impotriva Coroziunii

Coroziunea si protectia metalelor si aliajelor impotriva coroziunii

1. Privire generala asupra coroziunii metalelor

Pagubele provocate economiei nationale de catre coroziune ating proportii uriase. Conform datelor existente,aproape o treime din productia mondiala de metal este scoasa din uz datorita coroziunii. Intrucat numai circa doua treimi din metalul corodat se recupereaza prin topire, inseamna ca circa 10% din productia mondiala se pierde definitiv ca urmare a actiunii de distrugere a coroziunii.Pagubele datorita coroziunii sunt adesea legate nu numai de pierderile de metal ci si de scoaterea din functiune a unor instalatii intregi,pentru a caror prelucrare si montare se cheltuieste mai mult decat costul materialului din care sunt facute. Daca pentru sinele de cale ferata costul materialului depaseste costul de fabricatie,pentru alte produse cum ar fi masinile,avioanele,aparatele de precizie etc., costul de fabricatie depaseste cu mult costul materialului.Termenul de coroziune este conventional si cuprinde o serie de procese,de schimbari chimice si electrochimice prin care metalele trec dintr-o forma elementara intr-o forma combinata. Aceasta trecere este posibila deoarece in natura, in mod obisnuit, metalele se gasesc sub forma combinata ca: oxizi,carbonati, hidroxizi, a caror energie libera este mai mica decat a metalului pur,ceea ce determina tendinta naturala a metalelor de a trece la forme cu energie libera mai redusa.Prin coroziune se intelege distrugerea materialelor datorita reactiilor chimice sau electrochimice cu mediul inconjurator. Atacul chimic direct este posibil la toate materiile prime folosite in industrie, in timp ce atacul electrochimic nu apare decat la metale, deoarece numai ele poseda electroni liberi. Materialele sintetice nu poseda aceasta structura ele fiind de obicei supuse degradarii numai prin atac chimic.Dupa mecanismul de desfasurare se pot distinge doua tipuri de coroziune :

-coroziunea chimica care se refera la procesele de distrugere a metalelor si

aliajelor care se produc in gaze uscate, precum si in lichide fara conductibilitate electrica si in majoritatea substantelor organice ;

-coroziunea electrochimica se refera la procesele de degradare a metalelor sialiajelor in solutii de electroliti, in prezenta umiditatii, fiind insotite de trecerea

curentului electric prin metal.

Atat coroziunea chimica cat si cea electrochimica, fiind procese ce se desfasoara la interfata metal-gaz, fac parte din categoria reactiilor eterogene si se supun legilor generale ale cineticii acestor reactii.

Dupa aspectul distrugerii, coroziunea poate fi clasificata in : coroziune continua, cand intreaga suprafata metalica a fost cuprinsa de actiunea mediului agresiv; si caroziunea locala cand distrugerea se produce numai pe anumite portiuni ale suprafetei metalului sau aliajului.

In practica,fenomenele de coroziune sunt in mod frecvent extrem de complexe si apar sub diferite forme,motiv pentru care o clasificare riguroasa a tuturor acestor fenomene este greu de efectuat.In functie de aspectul distrugerii,coroziunea se clasifica in:· coroziune continua· coroziune localaDaca coroziunea este distribuita pe intrega suprafata a metalului coroziunea se numeste continua. Coroziunea continua poate fi uniforma sau neuniforma, dupa cum viteza procesului de distrugere este aceeasi pe intreaga suprafata metalica sau diferita pe anumite portiuni.Daca distrugerea coroziva se concentreaza pe anumite portiuni ale suprafetei, distrugerea se numeste coroziune locala. Coroziunea locala poate fi de mai multe feluri:· Coroziunea punctiforma, care se localizeaza pe suprafete mici (puncte de coroziune);· Coroziunea sub suprafata, care incepe la suprafata dar se extinde de preferinta sub suprafata metalului provocand umflarea si desprinderea metalului (pungi de coroziune);· Pete de coroziune,care se repartizeaza pe suprafete relativ mari,dar adancimea lor este mica;· Coroziunea intercristalina,care se caracterizeaza prin distrugerea selectiva a metalului la limita dintre cristale;· Coroziunea transcristalina,care reprezinta un caz tipic de coroziune locala la care distrugerea coroziva este determinata de directia tensiunilor mecanice de intindere. Caracteristic la acest fel de coroziune este faptul ca fisurile se propaga nu numai la limita cristalelor ci ele chiar le traverseaza.

Determinarea vitezei de coroziune:

Consideratii teoretice:

Notiunea de coroziune include toate procesele chimice si electrochimice care au drept rezultat degradarea spontana si continua a suprafetelor metalelor si aliajelor.

Majoritatea metalolor se gasesc in natura sub forma de combinatii dintre care de cele mai multe ori sub forma de oxizi. Acest fapt dovedeste ca pentru aceste metale, starea metalica este instabila din punct de vedere termodinamic, in prezenta agentilor chimici si electrochimici, ele avand tendinta de a se coroda, refacand conditiile din care au provenit. In seria tensiunilor chimice, aceste metale sunt situate inaintea hidrogenului si au potentiale normale normale de electrod negativ.

In tehnologie tocmai aceste metale sunt folosite cu precadere, din care cauza pierderile de metale sunt dintre cele mai mari. Un numar restrans de metale, metale nobile, se gasesc in natura si in stare libera. Ele se situeaza dupa hidrogen in seria tensiunilor electrochimice si sufera mai greu procesul de degradare prin coroziune.

Coroziunea este un proces complex fiind determinat de multi factori. In functie de mecanismele dupa care se desfasoara, coroziunea poate fi chimica si electrochimica.

Coroziunea chimica are loc in mediu uscat, atunci cand metalele sau aliajele sunt atacate chimic de unele gaze dintre care enumeram: oxigenul, clorul, bioxidul de sulf, bioxidul de carbon, hidrogenul sulfurat, acidul clorhidric, etc. Acest tip de coroziune e prezenta mai cu seama in unele instalatii din industria chimica, fiind favorizata de temperatura.

De cele mai multe ori, coroziunea chimica capata un aspect electrochimic (coroziune electrochimica), deoarece instalatiile, utilajele, masinile, statiile de transformare, conductele aeriene si subterane de gaze si apa, etc. in contact cu agentii atmosferici (oxigenul sau umezeala din aer), sunt de fapt sisteme electrochimice, formate dintr-un metal sau aliaj in contact cu un electrolit. Aceste sisteme dau nastere la pile electrice locale.

Pierderile cele mai insemnate de metal se datoreaza coroziunii fierului si a aliajelor feroase. O bara de fier lasata timp indelungat in contact cu agentii atmosferici, colecteaza in cavitatile retelei metalice apa slab acidulata. In aceste cavitati, care vor functiona ca anozi ai unor pile electrice locale, sub influenta moleculelor dipolare ale apei, fierul trece sub forma de , comform urmatorului proces anodic:

Electronii rezultati din acest proces, raman pe bara de fier si sunt orientati spre partile marginale ale cavitatilor, incarcand astfel suprafata metalica in aceste portiuni cu sarcina electronica negativa. Aceste suprafete incarcate cu sarcina negativa, vor functiona drept catodul pieselor electrice locale, pe ele avand loc urmatoarele procese:

Ionii rezultati, vor forma cu ionii hidroxidul feros , care in prezenta oxigenului atmosferic se transforma in oxid feric hidratant, cu aspect poros, sfaramicios, de culoare rosu inchis, care poarta denumirea de rugina.

Reactia redox care are loc este:

rugina

Stratul de rugina izoleaza suprafata metalica exterioara, dar procesul de coroziune se continua in profunzime.

Mod de lucru:

G

C

E

P

B

A

F

D

Pentru determinarea vitezei de coroziune se foloseste instalatia prezentata in figura de mai jos. Aceasta consta dintr-o biureta de sticla prevazutacu o palnie pentru captarea gazelor.

Epruveta de metal se introduce initial in vasul 1, dupa care se asaza biureta cu palnie 2. La capatul de sus al biuretei se fixeaza un furtun de cauciuc de la o trompa in vid.

Se da drumul incet la robinetul 3 al biuretei si se toarna toata cantitatea de acid in vasul 1. Acidul se ridica in biureta si cand atinge robinetul 3, acesta se inchide. Notarea volumului de gaz se face de obicei dupa 1, 2, 5, 30 minute si 1, 2, 5, 10, 24, 48 h. Cunoscand volumul de gaz degajat (in cazul nostru din 15 in 15 min.), se poate calcula viteza de coroziune a fierului cu ajutorul relatiei:

unde: v = viteza de coroziune (g/m2h).

G = greutatea fierului dizolvat(g).

S = suprafata probei supusa coroziunii(m2).

t = timpul de desfasurare a procesului de cosoziune(h).

Greutatea fierului dizolvat se afla pe baza calculelor stoechinometrice, comform ecuatiei relatiei chimice:

astfel:

1 atom de Fe=55,8 g produce degajarea a 22,4 l (c.n.) H2

G_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ V0 (l) H2

de unde:

Se calculeaza astfel trei valori pentru G in functie de cele trei volume V de H2, citite la intervalul de 15 min. (volumele se aduc in conditiile normale).

Pentru aceasta se vor citi temperatura si presiunea la un termometru, respectiv la un anemometru de laborator.

Valoarea vitezei de coroziune va fi data de media aritmetica a celor 3 volume obtinute.

Se mai poate calcula viteza de coroziune din viteza de degajare a hidrogenului, reprezentand grafic volumul V de H2 degajat in functie de timp.

Panta dreptei va fi tocmai viteza de coroziune.

Determinarea practica a vitezei de coroziune:

In figura urmatoare este prezentata piesa supusa coroziunii:

S1

S2

S3

S4

S5

l

L

h

d

L = 27 mm;

l = 16 mm;

h = 3 mm;

d = 9 mm;

Suprafata totala a piesei se calculeaza comform relatiei:

Calculam suprafata:

In urma efectuarii experimentelor, datele obtinute sunt:

S = 0,107m2

t = 900s

P = 756mmHg

P0 = 760mmHg

T = 293K

T0 =273K

V1 = 1,7 ml

V2 = 2,1ml

V3 =2,5ml

Efectuam calculele pentru a afla cele trei valori ale lui V0:

Efectuam calculele pentru a afla cele 3 valori ale lui G:

Efectuam calculele pentru a afla cele trei viteze de coroziune:

Viteza de coroziune va fi egala cu media aritmetica a celor trei valori ale vitezei obtinute:

2. COROZIUNEA CHIMICA

Coroziunea chimica se produce din cauza afinitatii dintre metal si unele gaze (O2;SO2;H2S;HCl gazos;CO;CO2;H2) sau lichide rau conducatoare de electricitate (alcooli;benzine;benzoli etc.) provocand modificari ale metalului manifestate prin:- dizolvarea partilor componente si pierderi de material;- spalarea componentilor;- dezagregarea materialului de catre cristalele sarurilor care se formeaza in porii sai;- marirea sau reducerea particulelor, deci si a intregii mase a metalului.Intensitatea procesului de coroziune chimica este conditionata de:natura materialului, natura materialului corosiv, concentratia , temperatura si presiunea mediului corosiv si durata de contact.Dintre factorii externi,actiunea cea mai daunatoare asupra metalelor o are oxigenul. Suprafata curata a multor metale expusa la aer se oxideaza rapid, daca reactia respectiva de oxidare;

Me + nO ® MeOn

are loc cu scaderea energiei libere. Molecula de oxigen este absorbita si concomitent scindata in atomi. Dupa aceasta are loc unirea atomilor de oxigen cu atomii de metal si formarea primului strat monomolecular de oxid. Daca pelicula de oxid formata prezinta proprietati protectoare,viteza initiala ridicata scade rapid in timp. Urmele de hidrogen sulfurat prezente in atmosfera la temperatura camerei catalizeaza coroziunea.

Capacitatea de protectie a peliculelor de oxid formate, depinde de permeabilitatea lor pentru substantele cu care reactioneaza.Porozitatea peliculelor de oxid depinde de raportul dintre volumul oxidului si al metalului din care s-a format, dat de relatia: 41548tct43fbb9v

;unde k este coeficientul de volum al oxidului.

In functie de valoarea coeficientului de volum al oxidului se deosebesc urmatoarele tipuri de pelicule de oxizi:1) pentru k<1, pelicula formata este poroasa si neprotectoare;2) pentru 11,5, pelicula formata este compacta insa cu puternice tensiuni interne, ceea ce provoaca exfolierea peliculei de oxizi la anumite grosimi, permitand in continuare degradarea metalului, viteza de crestere a peliculei fiind neregulata. Cazul tipic este oxidarea fierului (0,04%C;0,06Mn;0,01%Si) in aer la 9000K.Coroziunea chimica la temperaturi ridicate se produce cu viteze mari.Astfel la prelucrarea la cald a otelului, prin laminare, unde temperaturile sunt intre 1200...16000K,grosimea peliculei de oxid ajunge usor la cativa mm,ceea ce determina pierderi considerabile de metal la fiecare incalzire.Acest fenomen este posibil deoarece inca de la temperatura de 8500K incepe sa se formeze pe suprafata otelului un complex de oxizi (denumit si tunder) cuprinzand: (cu incepere de la suprafata metalului) FeO;Fe3O4 si Fe2O3 in straturi de grosimi diferite. Aceste straturi sunt poroase,permit oxidarea in continuare a metalului si se exfoliaza.De remarcat faptul ca stratul interior de FeO este cauza slabei aderente a oxizilor formati anterior la suprafata metalica, deoarece sub influenta atmosferei duce la formarea hidroxidului de fier, deci la aparitia ruginii, sub stratul de oxizi de laminare, ceea ce grabeste indepartarea ei.

Coroziunea chimica a metalelor sau aliajelor se produce prin reactii ce se desfasoara la suprafata acestora in contact cu gaze uscate sau solutii de neelectroliti.

Produsele care rezulta sub actiunea acestor medii raman, in general, la locul interactiunii metalului cu mediul coroziv, sub forma de pelicule de grosimi si compozitii diferite.

In functie de proprietatile lor fizico-chimice peliculele de corziune exercita o influenta importanta asupra desfasurarii ulterioare a procesului de coroziune, a cineticii acestuia, putandu-l frana intr-o masura mai mare sau mai mica.

Formarea peliculelor oxidice de coroziune :

Sub actiunea oxigenului din aer sau a altor medii care contin oxigen, metalele se acopera cu pelicule de oxizi a caror grosime depinde de temperatura si timpul de incalzire.

In funtie de durata si de temperatura de incalzire a metalului, peliculele formate au diferite grosimi si proprietati de protectie prezentate in tabelul urmator :

Felul peliculeiGrosimea peliculei [Å ]Proprietatile peliculeiPelicule subtiriSub 400 Nu protejeaza din cauza rezistentei reduse pe care o opune difuziunii agentului corosivPelicule medii400-5000Prezinta proprietati de protectie a suprafetei metalicePelicule groasePeste 5000Protectie ineficienta deoarece se fisureaza sub actiunea tensiunilor interne

O apreciere rapida a proprietatilor protectoare a peliculei de oxid rezultate in urma coroziunii este posibila cunoscand valoarea raportului dintre voluzmul oxidului format si volumul metalului distrus :

Vox =Mox /?ox ; Vm=An/?m; Vox /Vm=Mox /?ox*?m /An ,

in care: Mox-este masa moleculara a oxidului;

?ox-greutatea specifica a oxidului;

A-masa atomica a metalului;

?m-greutatea specifica a metalului;

n-coeficientul stoechiometric al metalului;

Daca acest raport este subunitar, adica Vox /Vm <1, stratul de oxid este discontinuu si permeabil, ca urmare, nu prezinta proprietatile protectoare. Astfel se comporta metalele alcaline si alcalino-pamantoase.

Pentru alte metale, ca: Ni, Cr, Cu, Sn, Zn,…, raportul Vox /Vm >1; La suprafata acestora se formeaza pelicule care franeaza considerabil desfasurarea in continuare a procesului de oxidare, adica poseda proprietati protectoare.

Conditia Vox /Vm >1 nu asigura intotdeauna o protectie anticoroziva, deoarece in timpul formarii peliculelor, apar tensiuni care vor provoca fisurarea acestor pelicule.

In cazul Fe-ului oxidarea in atmosfera a acestuia cu formarea oxizilor de Fe (rugina) are loc in trepte.

In prima treapta de oxidare a Fe-ului, se formeaza FeO, oxidul feros, care este stabil numai in absenta oxigenului. Cand apare oxigenul atmosferic, oxidul feros se transforma in hidroxid de fier (Fe2O3H2O) sau FeO(OH), dintre care se cunosc 2 faze:

Faza 1 care corespunde unui exces mare de oxigen;

Faza 2 caracterizata prin o cantitate de oxigen, insuficienta, din care cauza, oxidarea evolueaza incet.

In functie de culoare se pot deosebi 3 feluri de rugina si anume:

1. Rugina alba Fe(OH)2 , care se formeaza dupa reactia:

Fe+2H2O?Fe(OH)2+H2

Acest tip de rugina trece rapid, prin oxidare, in rugina bruna, de aceea se observa foarte rar.

2. Rugina bruna, apare in urma reactiei:

4Fe(OH)2+O2?4FeO*OH+2H2O

3. Rugina neagra, este formata din oxid feros si feric; fiind denumita si magnetita din cauza proprietatilor sale magnetice si este considerata ca fiind forma cea mai stabila a oxidului de fier. Ea formeaza pe suprafata metalului un strat protector, cu structura omogena si aderenta. Reactia decurge astfel:

2FeO*OH+Fe(OH)2?Fe3O4+2H2O

Dr. H. Engell, de la Institutul Max Plank, descrie astfel ruginirea fierului la temperaturi inalte:

pana la 570°C se formeaza pe metal fazele de oxidare, magnetita si hematita dintre care, magnetita reprezinta aproximativ 65-80% din grosimea stratului format.

De la 570°C incepe sa apara FeO (vustita) care creste mult odata cu temperatura de oxidare;

La 700°C stratul de tunder (oxid de laminare) se compune din 90% vustita.

Stratul de oxizi de laminare este alcatuit, de fapt, din mai multe straturi, dintre care, cel inferior, este format din FeO. Prezenta acestuia este cauza slabei aderente a oxizilor formati succesiv la suprafata metalica, deoarece sub influenta atmosferei, duce la hidroxid de fier, deci la rugina.

Coroziunea otelurilor la temperaturi inalte sub actiunea unor gaze oxigen, dioxid de carbon, hidrogen, apa, este insotita de reducerea continutului de carbon, ca urmare a descompunerii cementitei in straturile metalice din vecinatatea peliculei de oxid, dupa una din reactiile:

Fe3C+1/2O2?3Fe+CO;

Fe3C+2H2?3Fe+CH4 ;

Fe3C+ H2O?Fe+CO+ H2;

Fe3C+CO2?3Fe+2CO.

Din aceste reactii rezulta ca, marim concentratia in CO si CH4 in gaze echilibrele pot fi deplasate spre stanga. Pe acest principiu se aleg, in practica, atmosferele protectoare sub care se efectueaza tratamentele termice fara oxidare, carburarea sau decarburarea otelurilor.

Decarburarea duce la micsorarea rezistentei mecanice, coborarea limitei de oboseala.

Viteza de coroziune in gaze se micsoreaza prin crearea unei atmosfere inerte si mai ales prin alierea otelului cu diferite elemente se mareste stabilitatea otelului la temperaturi ridicate.

In ceea ce priveste coroziunea chimica a unui aliaj, in oxigen sau aer uscat, in principiu, depinde de afinitatea chimica a componentilor sai fata de oxigen, precum si de comportarea reciproca a oxizilor susceptibili de a se forma. De exemplu in cazul aliajului Fe-Cu, fierul are pentru oxigen o afinitate mult mai mare decat cuprul. Spre deosebire insa de fierul pur, oxidare se produce in adancime, provocand formare unui strat mixt de metal si oxid. Fierul oxidandu-se preferential, metalul ce ramane in stratul mixt se imbogateste in cupru si devin din acest motiv din ce in ce mai rezistent la coroziune. In cazul aliajului Ni-Cr, elementul de aditie este cromul, mult mai oxidabil in raport cu metalul de baza, nichelul. In urma coroziunii stratul superficial al aliajului va saracii in crom, dar va fi protejat ulterior de oxidul de corm, continuu si impermeabil.

3. COROZIUNEA ELECTROCHIMICASpre deosebire de coroziunea chimica, metalele in contact cu solutiile bune conducatoare de electricitate (electroliti) se corodeaza electrochimic.Solutia si metalul sunt strabatute, in acest caz,de un curent electric,generat de procesele electrochimice care se desfasoara la limita celor doua faze.Pentru aparitia acestui tip de coroziune este necesar sa existe un anod,un catod, un electrolit si un conductor, deci un elament galvanic. Prin inlaturarea uneia dintre aceste conditii,coroziunea electrochimica nu se produce.Dupa cum in practica industriala metalele folosite in mod curent, sunt eterogene, se pot considera ca fiind alcatuite din electrozi electrici scurtcircuitati prin insasi corpul metalului respectiv. Prin introducerea metalului in apa sau in mediu cu proprietati electrolitice, pe suprafata metalului apar elemente galvanice in care impuritatile din metal functioneaza ca microcatozi cu descarcare de hidrogen pe suprafata lor, in timp ce metalul, functionand ca anod se dizolva.Exemple tipice de coroziune electrochimica se intalnesc in cazul coroziunii atmosferice (ruginirea fierului) si la coroziunea provocata de curentii electrici de dispersie din sol numiti si curenti vagabonzi.In problemele practice de coroziune importanta este cunoasterea vitezelor reale cu care procesul se desfasoara. Daca procesul de coroziune este posibil,dar are o viteza de desfasurare foarte mica, se poate considera ca materialul este rezistent la coroziune. Viteza de coroziune se exprima prin masa de metal distrus pe unitatea de suprafata in unitatea de timp g/m2h sau adancimea la care au ajuns degradarile in unitatea de timp mm/an.Cunoasterea acestor indici,permit alegerea corespunzatoare a materialului in functie de natura mediului,ceea ce determina o dimensionare corespunzatoare a instalatiilor si o justa apreciere a duratei lor in exploatare.

4. METODE DE PROTECTIE ANTICOROSIVA A MATERIALELOR METALICE

Protectia impotriva coroziunii reprezinta totalitatea masurilor care se iau pentru a feri materialele tehnice de actiunea agresiva a mediilor corosive.Metodele si mijloacele de protectie anticorosiva sunt foarte variate si numeroase;principial ele se pot grupa in urmatoarele categorii:· metode de prevenire a coroziunii· utilizarea metalelor si aliajelor rezistente la coroziune;· metode de actionare asupra mediului corosiv;· metode de acoperire a suprafetelor metalice. cb548t1443fbbb

4.1. Metode de prevenire a coroziunii

Metodele de prevenire a coroziunii constau in:· alegerea corecta a materialelor utilizate in constructia de aparate si utilaje industriale,din punct de vedere al rezistentei la coroziune;· evitarea punerii in contact a unui metal cu un alt metal mai electronegativ decat el,de exemplu aluminiu alaturi de aliajele cuprului sau otelurilor aliate,bronz in contact cu otelul etc.· la fel se va evita punerea in contact a metalelor ecruisate cu metalele recoapte sau turnate,deoarece din cauza diferentei de potential electrochimic dintre ele,in prezenta unui electrolit corespunzator,primele se corodeaza;· prelucrarea mai ingrijita a suprafetei metalului,deoarece adanciturile,zgarieturile favorizeaza si accelereaza coroziunea.

Coroziunea este o reactie chimic, electrochimica sau biochimica sub actiunea mediului inconjurator prin care o substanta este distrusa, dizolvata sau micsorata partial sau complet. Termenul coroziune este in special folosit pentru a defini actiunea treptata asupra metalelor a unor agenti naturali, cum ar fi aerul sau apa sarata.

Cel mai intalnit exemplu de coroziune este ruginirea fierului, o reactie chimica complexa in care fierul se combina si cu oxigen si cu apa pentru a forma oxid de fier. Oxidul este un solid care mentine aceeasi forma generala a metalului din care a fost format, dar mai poros si mai voluminous, fiind slab si fragil.

Se pot folosi trei metode pentru a preveni ruginirea fieruluii

1. Crearea unui aliaj din fier care sa reziste coroziunii

2. Adaogarea unui strat dintr-un material care sa reactioneze cu substantele corozive mult mai rapid decat fierul, astfel pe masura ce acel strat se consuma, fierul este protejat.

3. Acoperirea cu un strat impermeabil in asa fel incat aerul si apa sa nu ajunga la fier.

Crearea unui aliaj din fier este cea mai buna metoda de protectie dar si cea mai scumpa. Un exemplu ar fi otelul inoxidabil care se obtine prin combinarea cromiului sau a cromiului si nickelului cu fierul. Acest aliaj nu este absolut inoxdabil dar rezista chiar si sub actiunea unor substante corozive puternice, cum ar fi acidul azotic.

A doua metoda, protejarea cu un metal activ, este si ea satisfacatoare dar scumpa. Cel mai intalnit exemplu este metoda galvanizarii, in care fierul este acoperit cu un strat de zinc. in prezenta solutiilor corozive, un potential electric apare intre fier si zinc, cauzand dizolvarea zincului si protejarea fierului pe toata perioada existentei zincului.

A treia metoda, si anume protectia suprafetei fierului cu un strat impermeabil, este cea mai ieftina dintre toate si de aceea cea mai des intrebuintata. Ea satisface cerintele de protectie a fierului atata timp cat nu apare nici o fisura pe strat. Odata ce stratul este crapat, ruginirea incepe cel putin la fel de rapid decat daca nu ar fi avut nici o protectie. Daca stratul protector este format dintr-un metal inactiv, cum ar fi cositor sau crom, un potential electric se creaza, protejand stratul de protectie dar daunand fierului, permitand ruginei sa actioneze cu o mai mare viteza. Cele mai eficiente straturi de protectie sunt cele cu smalt, iar cele mai ieftine sunt vopselele speciale, cum ar fi plumbul rosu.

Unele metale, cum ar fi aluminiul, chiar daca sunt foarte active din punct de vedere chimic, nu prezinta urme de coroziune sub conditii normale de atmosfera. De fapt, aluminiul se oxideaza repede,si un strat subtire, continuu si transparent de oxid se formeaza pe metal, protejandu-l de la o extindere rapida a ruginei. Plumbul si zincul, chiar daca sunt mai inactive decat aluminiul sunt protejate similar de aceste straturi subtiri de oxid. Cuprul insa, un metal comparativ, este oxidat incet de catre aer si apa in prezenta unor acizi slabi, cum ar fi acidul carbonic, producand o substanta verde si poroasa care nu este altceva decat carbonat de cupru. Aceste produse verzi ale coroziunii, supranumite si cocleli, apar pe aliajele din cupru cum ar fi alama sau bronzul, si de asemenea pe cupru pur.

Unele metale, numite si metale nobile, sunt asa de inactive chimic incat nu sufera de coroziune din atmosfera. Printre ele se numara paladiul, aurul si platina. O combinatie de apa cu aer si sulfat de hidrogen actioneaza asupra argintului, care este un metal semi-nobil, dar cantitatea de sulfat de hidrogen prezenta in atmosfera este asa de mica incat gradul de coroziune este neglijabil, exceptand pierderea lustrului si schimbarea in negru a culorii, care este cauzata de formarea sulfatului de argint.

Coroziunea metalelor este o mai mare problema decat a altor materiale. Sticla se corodeaza sub actiunea unor solutii alkaline, iar betonul sub actiunea solutiilor rezistente la sulfati. Rezistenta aceastor materiale se poate mari semnificativ modificandu-le compozitia.

Datorita rezistentei la coroziune si a duritatii a materialelor ceramice, fabricantii folosesc des smaltul pentru acoperirea metalului si protejarea lui. Ei reusesc acest lucru prin injectare de gaz comprimat care contine praf ceramic in flacara unei torte de hidro-carbon oxigenat care arde cu o caldura de 2500 grade Celsius. Particulele de praf semi-topit adera la metal, si dupa racire formeaza un strat tare de smalt. Aparatele electro-casnice, cum ar fi frigiderele, cuptoarele, masinile de spalat si uscatoarele sunt des acoperite cu un strat de smalt.

ALUMINIUL

In are liber, uscat , la temperatura obisnuita si mai joasa aluminiul se conserva foarte bine deoarece se acoperacu un strat subtire(proaspat , de circa 0,01 mm) de oxid Al2 O3, adreent si compact.

Apa de ploaie, distilata, sau potabila,nu-l ataca. Incalzirea acestora(0…100°C)determina cresterea grosimii stratului initial de oxid.Apa sarata il ataca doar la suprafata.

Cu azotul aluminiul incepe sa reactioneze la peste 650°C cu formarea de AIN, care hidrolizeaza usor cu formare de Al(OH)3 si amoniac.

Cu oxigenul reactioneza forte enregic cu formare de Al2O3.In aer uscat se obtine un strat foarte subtire cu proprietati de izolare electrica.

Cu hidrogenul nu reactioneaza,insa aceasta se dizolva in aluminul lichid si solid.

Cu carbonul reactioneaza in aer la circa 2000°C iar in vacuum pana la 1000°C cu formare de Al4C3 , care peste 2000°C se descompune cu formare de grafit.

Cu halogenii reactioneaza energic.La temperaturi peste 100°C cu clorul formeza AlCl3 care la 185°C se voalatilizeaza, fara topire.

Cu fosforul reactioneaza 600°C, cu formarea fosfuriiAIP foarte higroscopica, folosita ptr. formarea unor substate substante.

ARGINTUL-incepe sa se oxideze in prezenta urmelor de ozon sau la incalzire la peste 200°C.

AURUL-in solutii apoase cu clor si mai ales cu ionul CN- ,este atacat, mai ales in prezenta oxigenul din are.

BERILIUL-in combinatii gradul de oxidare (valeta) este +2.

Oxidarea lui mai intensa are loc abia la 800°C.Oxidarea intensa a beriliului pulbere are loc la temperaturi mult mai joase.

CADMIUL-la temperatura obisnuita , in aer curat este stabilit.In aer umed se acopera cu un strat protector de CdO care impiedica oxidarea in adancime.

COBALTUL-cu oxigenul incepe sa interactioneze la peste 250°, cu formare pana la 850°C de amestec de oxizi format din CoO verde , la inerior, puternic aderent la metalul de baza si Co3O4.

CUPRUL-este un metal putin activ. La temperatura obisnuita nu reactioneaza cu aerul uscat sau umed.Aerul umed ce contine CO2 acopera cuprul cu in srtat de carbonat bazic(cocleala).Cuprul incalzit la peste 185°C se acopera cu oxid cupuros care la temperaturi inalte (>1000°C) se transforma in oxid cupric.

Fierul-rezista la coroziune in functie de puritatea lui. Fierul de inalta puritate se distinge in functie de rezistenta la coroziune.Rezistenta la coroziune in atmosfera si solutii neutre a fierului creste, de asemenea pri alere in special cu proportii mici de cupru. Cu oxigenul, fierul formeaza oxizii: FeO,Fe2O3 si Fe2O4.

MAGNEZIUL-in aer liber uscat,la temperatura obisnuita , magneziul se acopera cu un strat subtire de oxid de magneziu ce il protejeaza de oxidare in adancime. La ridicarea temperaturii insa , peste cca 475ºC viteza de oxidare creste foarte mult si duce la distrugera peliculei protectoare.In aer industrial magneziul se acopera cu o pelicula de MgO si MgCO3 slab rezitenta la coroziune in aer umed si marin.Apa dulce cu io de clor, fosfati, sulfati, azotati ataca mageziul. Este atacat deasemenea de apa marina si sarata. Rezista la coroziune in alcolul etilic, HF, NaF, KF, NaOH, petrol, acetona benzina , motorina, metan, etan, soda , sulf topit, CS2, cromati, bicromati, fenol, crezol etc.

PLATINA-este un metal putin activ si rezista la orice fel de apa (de mare, sarata ,dulce ,minerala). Cu oxigenul formeaza oxizi bazici(PtO), amfoteri(PtO2 si PtO3) si acizi(PtO3).

PLUMBUL-are o stabilitate la coroziune ce depinde de mediul agresiv, temperaturi si impuritati.

TITANUL-rezista bine coroziune in orice apa , inclusiv cea de mare. In schimb ,pulberea de titan cu cat este mai dispersa si neoxidata cu atat e mai activa.

URANIUL-in apa , la temperatura obisnuita , uraniul este repede atacat si se descopune lent cu formare de UO2 protector.

ZINCUL-formeaza cu oxigenul oxizi ZnO si ZnO2.Oxidul ZnO se obtine prin arderea zincul , aproximativ pana la temperatura de fierbere a acestuia.

Camasuirea este un process metalurgic de legare a straturilor ale acelorlasi sau diferite metale. Combinatia rezultata, care de multe ori se realizeaza la preturi mici, poate avea proprietati de duritate, conductivitate si rezistenta impotriva coroziunii care nu pot fi intalnite intr-un metal pur. Un exemplu de metal de acest gen es

download